

PAR-003-1015027

Seat No.

B. Sc. (Sem. V) (CBCS) Examination

October / November - 2018

Physics: 503
(New Course)

Faculty Code: 003

Subject Code: 1015027

Time : $2\frac{1}{2}$ Hours] [Total Marks : 70]

Instructions: (1) All questions are compulsory.

- (2) Symbols have their usual meanings.
- (3) Figures to the right indicate marks.
- 1 (a) Answer the following in short:

4

- (1) Write the formula for power gain in dB.
- (2) Which coupling method is used to amplify extremely low frequencies?
- (3) Define distortion in an amplifier.
- (4) Give the units of thermal resistance.
- (b) Answer in brief: (any one)

 $\mathbf{2}$

- (1) A three stage amplifier has a first stage voltage gain of 50, second stage voltage gain of 100 and third stage voltage gain of 300. Find the total voltage gain in dB.
- (2) A power transistor dissipates 4W. If the maximum junction temperature is 90°C, find the maximum ambient temperature at which it can be operated, given that $\theta=10$ °C/W.
- (c) Answer in detail : (any one)

3

- (1) Give the comparison of different types of coupling methods.
- (2) Define performance quantities of power amplifiers.
- (d) Write notes on : (any one)

5

- (1) Explain R-C coupled amplifier with neat circuit diagram.
- (2) Show that the maximum collector efficiency of transformer coupled class A amplifier is 50%.

2	(a)	Answer the following in short:		
		(1)	Give the limitations of mechanical switch.	
		(2)	Give the advantages of electronic switches.	
		(3)	Define an integrating circuit.	
		(4)	Define a clipping circuit.	
	(b)	Answer in brief: (any one)		
		(1)	An astable multivibrator has $R_2=R_3=12k\Omega$ and $C_1=C_2=0.02\mu f$. Find the time period and frequency of the output wave form.	
		(2)	A peak-to-peak input voltage of 20V is applied to a positive clipper. If $R_L = 1 k\Omega$ and $R = 200\Omega$, determine the output voltage for each half cycle.	
	(c)	Answer in detail : (any one)		3
		(1)	Explain how a transistor works as a switch.	
		(2)	Show that the output of a differentiating circuit is derivative of the input voltage.	
	(d)	Write notes on: (any one)		5
		(1)	Explain astable multivibrator with neat circuit diagram.	
		(2)	What do you understand by a clamping circuit? Explain the working of a negative clamper with a neat circuit diagram.	
3	(a)	Ans	swer the following in short:	4
		(1)	What is the need of regulated power supply?	
		(2)	Write the equation of voltage regulation.	
		(3)	Define differential amplifier.	
		(4)	Give the classification of ICs based on structure.	
	(b)	Answer in brief: (any one)		2
		(1)	A power supply has a voltage regulation of 1%. If the no-load voltage is 30V, what is its full-load voltage?	
		(2)	A non-inverting op-amp has $R_1=10k\Omega$ and $R_f=1M\Omega$. Determine its voltage gain.	
	(c)	Ans	swer in detail : (any one)	3
		(1)	Explain transistor series voltage regulator.	
		(2)	Write the characteristics of an ideal op-amp.	

Write a note on series feedback voltage regulator. (2)Explain the use of op-amp as an adder. Answer the following in short: 4 (a) 4 (1)Define transducers. (2)Give two examples of nuclear transducers. (3) Define tachometer. (4) Write the equation which gives the relation between temperature and resistance of a metallic wire. Answer in brief: (any one) 2 (b) A platinum wire with $R_0 = 100\Omega$ and $\alpha = 0.00385$, is kept in an environment at 100°C. What is its resistance? (2) A wire strain gauge with a gauge factor K=5 is bonded to an iron member which is subjected to a strain of 10^{-7} . If the original no-strain resistance of the gauge is 100Ω , calculate the change in gauge resistance. (c) Answer in detail: (any one) 3 Explain strain gauge. (1)Explain resistive position transducer. Write notes on : (any one) 5 Explain construction and working of LVDT. **(1)** (2)Write a note on thermistor. 5 Answer the following in short: 4 Write the difference between electrical and electronic instruments. (2) Give the advantages of a digital voltmeter. Define flip-flop. (3)Write the logic equations of SUM and CARRY for half-adder.

3

(d)

PAR-003-1015027]

Write notes on : (any one)

5

[Contd....

- (b) Answer in brief: (any one)
 - (1) If $R_A = R_B = 47k\Omega$ and C=1000 pF, calculate the frequency of oscillation of a stable 555 timer.
 - (2) Calculate the output pulse width for the 555 timer of monostable multivibrator given that $R_A=4.7k\Omega$ and $C=1.5~\mu f$.
- (c) Answer in detail: (any one)

3

2

- (1) Write six applications of CRO.
- (2) Write a note on demultiplexer.
- (d) Write notes on : (any one)

- 5
- (1) Draw a block diagram of CRO and explain.
- (2) Write a note on half-adder.